機械工学科

キーワード

振動制御、機能性流体、ニューラルネット、ディープラーニング、RF-ID、 MEMS、BDF、複雑系、交通流

教授 / 博士(工学)

Takashi Tsuchiya

学歷

青山学院大学 理工学部 機械工学科、青山学院大学 大学院 理工学研究科 機械工学専攻 修士課程、 横浜国立大学 大学院 工学研究科 社会人博士課程機械工学専攻博士課程

いすゞ自動車株式会社、株式会社豊田自動織機、静岡理工科大学講師、准教授/教授 国立高等専門学校機構 一関工業高等専門学校教授、千葉大学客員教授 自動車技術会技術教育賞(2014)

相談・講演・共同研究に応じられるテーマ

振動制御に関する問題、機能性流体の応用、適応制御(ニューラルネット、ディープラーニング)、 RF-IDを応用した測定困難箇所の計測、交通流等の複雑系問題

メールアドレス

tsuchiya@fukui-ut.ac.jp

主な研究と特徴

「RF-ID 技術を応用した構造物の健全性検知」

電源が不要なパッシブ型センサータグを応用し、アナログデータを取得可能なセンサータグの開発をおこなった。

また、このタグを建造物に使用されているボルトやナット等に組み込み、ボルト軸力や環境条件を測定するシステムの構築を実施しており、電池等 の電源が不要で必要な時にアンテナを1m程度まで近づけることでデータが測定することができるシステム構築ができている。

今後の展望

ドローン等にアンテナを搭載し、通常では測定困難な場所(急傾斜地、橋梁、トンネル内)での測定を可能にすることができる。

Mechanical Engineering

Key words

Vibration control, Functional fluid, Adaptive control (neural net, deep learning), RF-ID, Complex system, Traffic flow

Doctor of Engineering / Professor

Takashi Tsuchiya

Department of Science and Engineering, Mechanical Engineering, Aoyama Gakuin University Aoyama Gakuin University Graduate School of Science and Engineering Yokohama National University Graduate School of Engineering (Doctoral Program)

Professional Background

Isuzu Motors,Ltd. Toyota Industries Corporation Shizuoka Institute of Science and Technology National Institute of Technology, Ichinoseki College

Consultations, Lectures, and Collaborative Research Themes

Vibration control issues, Application of functional fluid, Adaptive control (neural net, deep learning), Measurement of difficult measurement points using RF-ID, Complex system problems such as traffic flow

e-mail address

tsuchiya@fukui-ut.ac.jp

Main research themes and their characteristics

Structural health detection using RF-ID technology

We have developed a sensor tag that can acquire analog data by applying a passive sensor tag that does not require a power source.

We have also developed a system for measuring bolt axial force and environmental conditions by embedding this tag in bolts and nuts used in buildings.

Future prospects

Antennas can be mounted on drones and other equipment to enable measurement in areas that are normally difficult to measure (steep slopes, bridges, and inside tunnels).