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Main research themes and their characteristics

Effects of magnetic field and hydrostatic pressure on displacive transformation

Fe~24.7Ni~1.8C (at%)
Fe-3.9Mn-5.0C (at%)
Fe=31.7Ni (at%)
Fe-325Ni (at’)
Fe-24Pt (at%)

Displacive transformation, in particular martensitic transformation observed in many metals, alloys and ceramics is a first order transition and
now widely exploited in smart materials as well as structural materials. In near future, these materials will be used under extreme conditions such as
outer space, undersea, and underground. Despite of such expected requirements, there are few investigations related to phase transformation under
extreme conditions ( high magnetic field, high hydrostatic pressure, cryogenic temperature, high stress and high vacuum etc. ).

Then, we are going to investigate systematically the effects of high magnetic field (60 T) and high hydrostatic pressure (100 GPa) on martensitic
transformation. As a result, we find that both the magnetic field and hydrostatic pressure remarkably influence the martensitic transformation
temperature. For instance, in an Fe-31.7at.%Ni alloy, the transformation temperature increases by about 75 K by the application of magnetic
field of 32MA/m (40T) (Fig.1), while it decreases in an Fe-29.9at.%Ni alloy by 100 K by the application of hydrostatic pressure of 1.5 GPa (Fig.2).
Taking these results into account, we derive a new formula which determines magnetic field and hydrostatic pressure dependences of martensitic
transformation temperature. In addition, we derive a new model which can explain kinetics of martensitic transformation by introducing statistical
thermodynamics to the nucleation process. Moreover, we find that the distribution of martensite plates is affected by magnetic field, meaning that
morphology of martensite is controlled by magnetic field. Furthermore, we firstly find a magnetoelasitc transformation, in which the martensite phase
exists only under magnetic field. We also find a giant strain (several %) induced by quite low stress in Fe-based ferromagnetic shape memory alloys.
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Fig.1 Magnetic Field dependence of martensitic
Transformation temperature in Fe-Ni alloys
---calculation

Future prospects




