機械工学科

キーワード

熱機関、環境負荷低減技術、エネルギー利用、燃焼

教授 / 博士 (工学)

位田

晴良

Haruyoshi Ida

学歷

福井工業大学大学院工学研究科博士課程単位修得退学

経歴

福井工業大学准教授

相談・講演・共同研究に応じられるテーマ

小型ディーゼルエンジンの性能試験・排ガス計測に関する技術相談、エンジンの性能や自動車の構造に関する講演

メールアドレス

h-ida@fukui-ut.ac.jp

主な研究と特徴

「生物資源由来燃料を用いたディーゼルエンジンの排ガス低減」

石油代替燃料として注目されているBDF(バイオディーゼル燃料)は酸素を多く含んでおり、ディーゼルエンジンの燃焼を促進することが期待できる。しかし、BDFは動粘度が高いため微細な噴霧が形成され難く、運転条件によっては軽油使用時に比べてPM排出量は増加する傾向がある。本研究ではBDFを用い、高圧燃料噴射装置付小型ディーゼルエンジンの性能武験において排ガス特性検討した。その結果、高圧燃料噴射によりBDF使用時の熱効率は改善されることが明らかになり、さらに軽油とBDFの混合燃料を用いるとBDFを単独で用いるよりもディーゼルエンジンの排ガス特性は向上することがわかった。一方、EGR(排ガス再循環)は、エンジンにおいてNOX濃度を低減させるために普及しているが、PM排出量を増加させる傾向がある。そこで本研究では、軽油とBDFの混合燃料がEGR付加ディーゼルエンジンの排ガス特性に及ぼす影響の把握を目的としてエンジンの性能試験を行った。その結果、正常運転が維持できる範囲

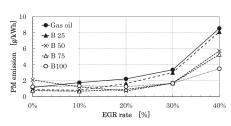


図1. 軽油とBDFの混合燃料を使用し測定したEGR率に対する PM排出量の変化(正常運転可能な範囲はEGR率30%以下)

でEGR率を上昇させた場合、軽油にBDFを適度に混合させて用いることにより良好な排ガス特性が得られることが分かった(図1)。

今後の展望

軽油とBDFの酸素含有量はディーゼルエンジンの吸入空気量に比べて極めて低い。そこで、EGRを適用した小型ディーゼルエンジンにおいて軽油とBDFを使用した性能試験を実施し、吸入空気と燃料に含まれる酸素が運転特性に与える影響を確認することが本研究の展望である。

Department of Mechanical Engineering

Key words

Heat engines, environmental load reduction technology, energy utilization, combustion

Doctor of Engineering / Professor

Haruyoshi Ida

Education

Graduate School of Engineering, Fukui University of Technology (Doctoral Program Credits Completed)

Professional Background

Associate professor at Fukui University of Technology

Consultations, Lectures, and Collaborative Research Themes

Technical consultations concerning performance tests and exhaust gas measurements of small diesel engines. Lectures on engine performance and the mechanics of automobiles.

e-mail address

h-ida@fukui-ut.ac.jp

Main research themes and their characteristics

Exhaust gas reduction in diesel engines using bio fuel

BDF (bio diesel fuel), which has recently drawn attention as an alternative fuel containing a lot of oxygen, promotes diesel engine combustion, thus promising improvements in thermal efficiency. However, minute atomization is not formed easily with BDF because of its high kinematic viscosity, so that PM emission tends to increase compared to the use of gas oil. This study examines the relations between exhaust gas characteristics and combustion characteristics in performance tests of a small diesel engine with a common rail fuel injection system, which changes fuel injection pressure by using BDF. Results clarified that thermal efficiency improved when BDF was injected at high pressure. Furthermore, previous research has found that using fuel with a mix of gas oil and BDF improves the exhaust gas characteristics of diesel engines, compared to using BDF alone. Elsewhere, EGR is widely used to reduce the NOx concentration in diesel engines, but it tends to increase PM emissions. Therefore, the purpose of this study is to grasp the effects of mixed gas oil and BDF fuel on the exhaust gas characteristics of diesel engines with EGR. To this end, engine performance testing using mixed gas oil and BDF fuels with different oxygen content ratios was performed. The results showed that excellent

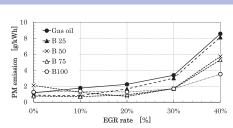


Fig.1 Variations of PM emission with EGR rate measured by using mixed gas oil and BDF fuels (normal operating range within EGR rate 30%)

exhaust gas characteristics can be obtained by using BDF appropriately mixed with gas oil when the EGR rate is increased within the range where normal operation can be maintained (Fig. 1).

Future prospects

The oxygen content of gas oil and BDF is extremely low compared to that of intake air of diesel engines. Therefore, the perspective of this study is to conduct performance tests using gas oil and BDF in a small diesel engine with EGR applied, confirming the effects of oxygen contained in intake air and fuel on operating characteristics.