機械工学科

キーワード

ナノカーボン材料、ナノ材料、電子顕微鏡法、その場観察、結晶材料物性

教授/博士(工学)

安坂

幸師

学歷

大阪大学 工学部 材料物性工学科、大阪大学 大学院工学研究科 材料物性工学専攻 博士前期課程、 大阪大学 大学院工学研究科 マテリアル科学専攻 博士後期課程

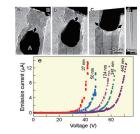
株式会社 富士通研究所 研究員、筑波大学 助手、名古屋大学 助手/助教/講師、 スイス連邦工科大学チューリッヒ校 Gastprofessor、福井工業大学 教授

相談・講演・共同研究に応じられるテーマ

ナノカーボン材料、ナノ材料、電子顕微鏡に関する解析評価、その場透過電子顕微鏡法による構造・ 物性の同時計測

メールアドレス

asaka@fukui-ut.ac.ip



主な研究と特徴

「その場透過電子顕微鏡による先端ナノ材料の構造と特性解明」

「カーボンナノチュープ(CNT)のナノ溶接と電界放出」

CNTは、先端が尖鋭であり、アスペクト比が大きいことに加え、電気伝導や機械的強度、化学的表面安定性、 高温耐熱性に優れていることから、従来の金属材料に比べて低電圧で電界放出するエミッタ材料として注目されて いる。CNT電界放出エミッタの実用化に向け、透過電子顕微鏡内で1本のCNTを観察しながら、CNT先端を白金(Pt) 電極にナノ溶接して単一CNTエミッタを作製し、その場で電界放出特性を調べた。図(a)-(c)にCNTとPt電極との 接合過程の様子を示す。Ptナノ粒子内包CNTの先端をPt電極(図(a)の上部の暗い領域)に接触させて電圧を印加す ると、ナノ粒子がCNTの内壁に沿って移動して電極と結合した。CNTはナノ粒子により電極に直接溶接され(図(c) 矢印)、電気的コンタクトがオーミックであることが期待される。その後CNTを支持基板から引離すと、CNTが電 極表面に自立した(図(d))。CNTと基板をそれぞれエミッタと陽極に用い、CNT先端-陽極間距離を変化させて電 圧と放出電流をその場で測定した(図(e))。これにより、従来のCNTエミッタに比べて低電圧での高電流放出を可 能とするなど実用電子源への応用に向けて重要な知見を得た。

(a)-(c)CNTのナノ溶接過程と(d)作製し た単一CNTエミッタの電子顕微鏡像.(e) 単一CNTエミッタ((d))の電界放出特性

今後の展望

ナノ材料個々を原子レベルで直接観て操り、または加工し、そのときの構造変化をリアルタイムで追いながら、その場で力や電流、電圧、光などを同時測定できる、 その場透過電子顕微鏡法を構築し、ナノスケール領域で発現する先端材料独特の特性や現象を材料工学、固体物理学、電子顕微鏡学の視点から解き明かす研究を推進する。

Mechanical Engineering

Key words

Nanocarbon, Nanometer-sized materials, Transmission electron microscopy, In-situ observation, Solid State Physics, Material properties

Doctor of Engineering / Professor

Koji Asaka

Education

Department of Material Science and Engineering, Faculty of Engineering, Osaka University Master's Program, Graduate School of Engineering, Osaka University Doctoral Program, Graduate School of Engineering, Osaka University

Professional Background

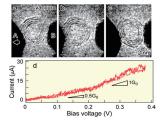
FUJITSU LABORATORIES LTD., Research associate, University of Tsukuba, Lecturer, Nagoya University, Gastprofessor, ETH Zürich, Professor, Fukui University of Technology

Consultations, Lectures, and Collaborative Research Themes

Nanocarbon, Nanometer-sized materials, Analysis /evaluation by electron microscopy, In-situ transmission electron microscopy

e-mail address

asaka@fukui-ut.ac.jp



Main research themes and their characteristics

In-situ transmission electron microscopy of nanometer-sized materials

Mechanical and Electrical Properties of a Carbon Nanocapsule

A carbon nanocapsule (NC) was compressed by manipulation in a transmission electron microscope (TEM), and the structural dynamics were observed in-situ with simultaneous measurement of the sub-nanonewton forces acting on the NC. The NC completely dented under a load of 4.6 nN exerted by a nanomanipulator, and recovered to its original shape when the nanomanipulator was retracted. The observations showed that the NC possesses a high toughness for compression. Meanwhile, electrical properties of the NC were studied by in-situ TEM. Figures (a)-(c) show a time-sequential series of highresolution images of a NC junction sandwiching between two gold electrodes at a cycle of contact and separation. Figure (d) shows a current-voltage curve for the NC measured at the state observed in Fig. (c). The differential conductance of the junction at bias voltages from 0 to 0.2 V corresponded to half of quantized conductance, i.e., 0.5 G_0 where $G_0=2e^2/h$ is the conductance quantum, e is the electron charge, and h is Planck's constant. The present study showed that the NC is quantized metallic conductors and can be utilized for various components for carbon device technologies

(a)-(c) Time-sequential series of high-resolution images of a NC junction in the cycle of contact and separation. The regions A and B are gold electrodes. (d) Current-voltage curve for the NC junction seen in (c).

Future prospects

Structural, electrical, mechanical, and optical properties of advanced nanometer-sized materials, including fullerene, carbon nanotube, graphene, carbyne, and so on, are studied by in-situ TEM from the standpoint of materials science, solid state physics, and electron microscopy.