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Main research themes and their characteristics

[Effects of magnetic field and hydrostatic pressure on displacive transformation |

Displacive transformation, in particular martensitic transformation observed in many metals, alloys
and ceramics is a first order transition and now widely exploited in smart materials as well as structural
materials. In near future, these materials will be used under extreme conditions such as outer space,
undersea, and underground. Despite of such expected requirements, there are few investigations related
to phase transformation under extreme conditions ( high magnetic field, high hydrostatic pressure,
cryogenic temperature, high stress and high vacuum etc. ).

Then, we are going to investigate systematically the effects of high magnetic field (60 T) and high
hydrostatic pressure (100 GPa) on martensitic transformation. As a result, we find that both the magnetic
field and hydrostatic pressure remarkably influence the martensitic transformation temperature. For
instance, in an Fe-31.7at.%Ni alloy, the transformation temperature increases by about 75 K by the
application of magnetic field of 32MA/m (40T) (Fig.1), while it decreases in an Fe-29.9at.%Ni alloy by
100 K by the application of hydrostatic pressure of 1.5 GPa (Fig.2). Taking these results into account,
we derive a new formula which determines magnetic field and hydrostatic pressure dependences of
martensitic transformation temperature. In addition, we derive a new model which can explain kinetics of
martensitic transformation by introducing statistical thermodynamics to the nucleation process. Moreover,
we find that the distribution of martensite plates is affected by magnetic field, meaning that morphology
of martensite is controlled by magnetic field. Furthermore, we firstly find a magnetoelasitc transformation,
in which the martensite phase exists only under magnetic field. We also find a giant strain (several %)
induced by quite low stress in Fe-based ferromagnetic shape memory alloys.

[Magnetic transition in intermetallic compounds DyCu and DyAg|

Recently, much attention has been paid to intermetallic compound composed of rare earth elements
and transition metals. They are candidate for new functional materials, especially, as magnet materials
and magnetic refrigeration materials. A well-known example is powerful magnets of SmCo; and Nd,Fe,,B.
In these materials, the superior properties are caused by the combination of f- and d-electrons. Thus, it is
of importance to clarify the correlation between the f- and d- electrons.

In order to clarify the above problem, we examine magnetic properties of Dy based intermetallic compounds,
such as DyCu and DyAg. As a result, following results are obtained; (i) the ground state of these compounds has
a triple-q structure with its propagation vector in the <111> direction and they exhibit metamagnetic transitions
by the application of magnetic field. (i) C,, in the paramagnetic phase exhibits softening at temperatures near Ty
while Cg and C’ do not. This indicates that the dominant components of the quadrupole moment are Oyz, Ozx
and Oxy with I's-symmetry. (i) From an analysis of critical fields of metamagnetic transitions based on mean-
field approximation we have determined the quadrupole interaction coefficient to be K(0)-|Q2|/kg = -16.8 K. The
negative value of K(0) indicates that the quadrupole interaction has an antiferro-type of I'5-symmetry.
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