環境食品応用化学科

キーワード

環境分析、食品分析、環境浄化・保全、リサイクル

教授 / 博士 (工学)

田中

智 -

Tomokazu Tanaka

学歷

立命館大学 理工学部 化学科

経歴

名古屋大学文部技官、助手、福井工業大学助教授、教授、福井工業大学環境情報学部長、学務部長

相談・講演・共同研究に応じられるテーマ

環境分析(特に水質関係)や食品分析(特に有害金属)に関わる技術開発と技術相談、身のまわりの環 境問題やリサイクル・廃棄物処理に関する講演

メールアドレス

tanaka@fukui-ut.ac.jp

主な研究と特徴

「食品中の微量有害重金属を対象とした高度分析法の開発」

食品はヒトの健康に直接的な影響を及ぼすため、食品に含まれる有害物質については厳重な管理が求められている。近年、ヒトに必須のタンパク質源として注目されている昆虫食は、牛や豚などの家畜よりも環境負荷の少ない食材(サステナブルフード)

派として注目されている定式及は、十尺勝などの家畜よりも環境負債の少ない良何 (サスケア)ルフート)でもあるため、市場の拡大が見込まれている。しかしながら、一般の食品と同様に、昆虫食においても環境(飼育のための水や飼料など)に由来する有害物質の混入を避けることは困難である。 さらには、市場の拡大を見越して、昆虫の飼育から加工まで食品としての安全管理が十分になされない、いわゆる粗製乱造の昆虫食が流通する懸念もある。今後、昆虫食はより身近な存在になる可能性が高く、昆虫食を安心して食べられるようにするためには安全性の担保が不可欠である。

本研究では、マイクロ波分解容器による前処理と黒鉛炉原子吸光分析法による測定とを組み合わせ、昆虫食中に含まれる微量の有害重金属(カドミウムや鉛等)の分析に適用した。その結果、従来法で7時間程度かかっていた分解時間を8分に短縮するとともに、これらの有害重金属をコーデックス規格で定める国際基準値以下まで定量できることを実証した。

試料の分解前後の様子

今後の展望

検討した分析法によれば、分析の正確さを損なうことなく分解時間を大幅に短縮できることから、食品だけでなく、原材料となる農水産物中の有害金属を対象とした 迅速分析を展開していく予定である。また、サンプルによっては、含有成分が測定を妨害する場合があるため、標準添加法を適用するなどしてより正確な分析を心がける。

Department of Applied Chemistry and Food Science

Key words

Environmental analysis, food analysis, environmental purification/ conservation, recycling

Doctor of Engineering / Professor

Tomokazu Tanaka

Education

Department of Chemistry, Faculty of Science and Engineering, Ritsumeikan University

Professional Background

Technical Official, Research Associate at Nagoya University, Assistant Professor, Professor at Fukui University of Technology, Director of Student and Educational Affairs Division

Consultations, Lectures, and Collaborative Research Themes

Technical development and technical consultation related to environmental analysis and food analysis, Lectures on environmental problems, recycling and waste treatment

e-mail address

tanaka@fukui-ut.ac.jp

Main research themes and their characteristics

Development of advanced analytical methods for trace amounts of harmful heavy metals in food

Food has a direct impact on human health, so strict management of harmful substances contained in food is required. In recent years, insect food has been attracting attention as an essential protein source for humans, and since it is also a sustainable food that places less of a burden on the environment

than livestock such as cows and pigs, the market is expected to expand. However, just like with general foods, it is difficult to avoid contamination with harmful substances from the environment (such as water and feed used for breeding). Furthermore, in anticipation of market expansion, there are concerns that so-called poorly-made insect food will be distributed, without adequate food safety management from insect breeding to processing. In the future, it is likely that insect food will become more commonplace, and ensuring safety will be essential to ensure that people can eat them with peace of mind.

In this study, we combined pre-treatment using a microwave digestion vessel with measurement by graphite furnace atomic absorption spectrometry, and applied it to the analysis of trace amounts of harmful heavy metals (cadmium, lead, etc.) contained in insect food. As a result, we were able to shorten the digestion time from about seven hours using conventional methods to eight minutes, and demonstrated that these harmful heavy metals could be quantified to levels below the international standard values set by the Codex Alimentarius standard.

ore after

State of the sample before and after decomposition

Future prospects

The analytical method we have developed can drastically shorten the decomposition time without compromising the accuracy of the analysis, so we plan to deploy it in rapid analysis of hazardous metals not only in food products, but also in agricultural and marine products that are the raw materials. In addition, since the components contained in some samples may interfere with the measurement, we will aim to achieve more accurate analysis by applying the standard addition method.