環境食品応用化学科

キーワード

構造有機化学、有機合成、拡張π電子系、機能性有機材料、有機発光材料

教授 / 博士 (理学)

蔵田 浩之

Hiroyuki Kurata

学歴

大阪大学理学部化学科 卒業、大阪大学大学院理学研究科化学専攻博士前期課程 修了、大阪大学大学院理学研究科化学専攻博士後期課程 修了

経歴

大阪大学助手、独ゲッティンゲン大学研究員、大阪大学助教、大阪大学講師

相談・講演・共同研究に応じられるテーマ

有機物質(低分子化合物)の合成や性質に関する相談 /「身の回りの化学物質」に関する講演

メールアドレス

kurata@fukui-ut.ac.jp

主な研究と特徴

「縮環π電子系の特性を活かした発光性有機固体の創製」

一般に、発光性有機化合物は溶液中では発光するが、固体となると消光するものが多い。しかしながら近年、逆に固体状態で発光する化合物が見い

だされている。固体発光性の発現には結晶中における分子の配列が重要な役割を果たしており、母骨格が固体発光性を有していなくても、ベンゾ縮環などの分子修飾により結晶中の分子間に適当な相互作用を与えることができれば、新規な発光性有機固体が得られる可能性がある。様々な分子骨格に対して π 電子系が縮環した分子を系統的に合成し、発光性有機固体の物性・機能を解明することを目的とした研究を行っている。

現在、シアノスチルベン骨格とサリチリデンアニリン骨格を中心に、多様な発光色を有する化合物を合成するとともに(図1)、外部刺激に応じて発光色を変化させるフルオロクロミックな分子も得ており、発光性有機固体の領域に新たな知見を与えている。

図1. 蔵田研究室で合成された固体発光性化合物とその発光色(365nmの光照射)

今後の展望

得られた化合物の中には、固体発光量子収率が100%に達するものもあり、高い発光効率の発現と結晶構造との相関を明らかにしていく。また、有機ELなどへの応用も検討し、有機デバイスに対して固体発光性化合物ならではの新たな機能の付与を目指す。

Department of Applied Chemistry and Food Science

Key words

Structural organic chemistry, organic synthesis, extended π -electronic systems, functional organic materials, organic emitting materials

Doctor of Science / Professor

Hiroyuki Kurata

Education

Graduate School of Science, Osaka University (Doctor Program)

Professional Background

Research associate at Osaka University, researcher at Georg-August Universität Göttingen, assistant professor at Osaka University, lecturer at Osaka University

Consultations, Lectures, and Collaborative Research Themes

Consultation on the synthesis and properties of oraganic materials (low-molecular compounds). Lectures on chemical substances around us.

e-mail address

kurata@fukui-ut.ac.jp

Main research themes and their characteristics

Creation of luminescent organic solids utilising the properties of fused ring π -electron systems

In general, many luminescent organic compounds emit light in solution but are quenched in the solid state. In recent years, however, compounds have been found that emit light in the solid state. The arrangement of molecules in crystals plays an important role in the development

the solid state. The arrangement of molecules in crystals plays an important role in the development of solid-state luminescence, and even if the parent skeleton does not have solid-state luminescence, new luminescent organic solids may be obtained if appropriate interactions between molecules in crystals are provided by molecular modifications such as benzofused rings. We are systematically synthesising molecules with fused *n*-electron systems for various molecular skeletons and conducting research aimed at elucidating the physical properties and functions of luminescent organic solids.

We are currently synthesising compounds with various luminescent colors, mainly cyanostilbene and salicylideneaniline skeletons (Fig. 1), and have also obtained fluorochromic molecules that change their luminescent colors in response to external stimuli, providing new insights into the field of luminescent organic solids.

Fig. 1 Solid-state luminescent compounds synthesised in the Kurata laboratory and their luminescent colours (irradiated with 365 nm light).

Future prospects

Some of the obtained compounds have solid-state luminescence quantum yields of up to 100%, and the correlation between the high luminescence efficiency and the crystal structure will be clarified. We will also investigate their application to organic ELs and other devices, aiming to add new functions unique to solid-state luminescent compounds to organic devices.