環境食品応用化学科

キーワード

クロロフィル、盗葉緑体、微細藻類、原生生物、二次葉緑体、窒素代謝、 初期生命准化

教授 / 博士 (理学) 柏山 祐一郎 Yuichiro Kashiyama

学歷

理学士(1999):東京大学理学部地学科地質鉱物学専攻 Master of Science(2001):Department of Geosciences, University of Rhode Island 博士(理学)(2007):東京大学大学院理学系研究科地球惑星科学専攻

2007-2011: 2011-2012: 2012-2016: 日本学術振興会特別研究員(PD) 在:海洋研究開発機構/筑波大学 立命館大学グローバル・イノベーション研究機構 ポスドク研究員 科学技術振興機構「藻類バイオエネルギー」領域 さきがけ研究者(〜2013:専任)

2013-現在: 現職

相談・講演・共同研究に応じられるテーマ

生態系における光合成の役割、光合成の仕組みと進化、藻類バイオマス

メールアドレス

chiro@fukui-ut.ac.jp

主な研究と特徴

「盗葉緑体現象を経由する葉緑体獲得の分子メカニズムの解明」

真核生物による光独立栄養は、一般に、シアノバクテリアを起源とする葉緑体を機能させることで進化してきたと考えられる。ところが近年、他の 生物の葉緑体を収奪的に利用する、いわゆる「盗葉緑体」を利用して独立栄養的に活動する生物が、様々な真核生物の系統で見つかってきた。当研究室 では、これまでに、ユーグレノイド生物の一種ラパザ(Rapaza viridis)が、食作用を経由して葉緑体を緑藻Tetraselmis sp.から収奪する「盗葉緑体」生 物であることを示してきた。ラパザの核ゲノムには、多様な藻類から水平転移で獲得された葉緑体遺伝子が多数存在することも明らかにした。そこで 現在、最新のゲノム編集技術を駆使することで、外来の光合成オルガネラである盗葉緑体がホスト細胞(ラパザ)の制御を受けるメカニズムの解明を進 めている。これにより、盗葉緑体現象を経由する二次葉緑体進化に必要な分子レベルのリノベーションを明らかにし、新たなオルガネラ獲得における 進化プロセスの背景にある、真核細胞の有している未知の機構を探り、合成生物学の革新的な基盤技術の創出にもつながる研究を展開する。

今後の展望

現在注力している盗葉緑体生物の研究に加え、以前からの大きなテーマである水圏環境中でのクロロフィル分解代謝の分子メカニズム解明を進める。 これらにより「活性酸素源として危険な光合成の仕組みとの関わり合いが真核生物の多様性を生み出した」という学術的仮説の検証を進める。

Department of Applied Chemistry and Food Science

Key words

Phototoxicity of chlorophylls, chlorophyll metabolisms, kleptoplasts, microalgae, protists, secondary plastids, early eukaryotes

Ph.D. (Science) / Professor Yuichiro Kashiyama

B.Sc. (1999): Department of Geology, University of Tokyo M.S. (2001): Department of Geosciences, University of Rhode Island

Ph.D. (2007): Department of Earth and Planetary Science, University of Tokyo

Professional Background

2007-2010: JSPS Research fellow (Postdoctoral Fellow) at JAMSTEC/Univ. Tsukuba

2010-2012: R-GIRO Postdoctoral Fellow, Ritsumeikan Úniv.

2013-2016: PRESTO Researcher, JST

: Lecturer/Associate Professor/Professor, Fukui University of Technology

Consultations, Lectures, and Collaborative Research Themes

Lectures on the role of photosynthesis/phototrophy in ecosystems, mechanism of photosynthesis, aquatic microbiota, Earth's history, and evolutionary history of life

e-mail address

chiro@fukui-ut.ac.jp

Main research themes and their characteristics

Elucidation of the molecular mechanism of chloroplast evolution via kleptoplasty

Photoautotrophy in eukaryotes is believed to have evolved through the functional integration of chloroplasts derived from cyanobacteria. However, in recent years, organisms that exhibit photoautotrophic activity by exploitatively utilizing chloroplasts acquired from other organisms, known as "kleptoplasts," have been discovered across diverse eukaryotic lineages. Our laboratory has demonstrated that Rapaza viridis, a euglenoid protist, is a kleptoplastidic organism that acquires chloroplasts from the green alga Tetraselmis sp. via phagocytosis. We have also revealed that the nuclear genome of R. viridis harbors numerous chloroplast-related genes acquired through horizontal gene transfer from various algal sources. Currently, we are using state-of-the-art genome editing techniques to study the mechanisms by which kleptoplasts, exogenous photosynthetic organelles, are regulated by the host cell, R. viridis. Through this research, we aim to elucidate the molecular innovations necessary for the secondary evolution of plastids via kleptoplasty. We also hope to explore the cellular mechanisms underlying the acquisition of new organelles in eukaryotes and contribute to the development of novel foundational technologies in synthetic biology.

Future prospects

In addition to our current focus on kleptoplastic organisms, we are also pursuing our longstanding research theme: elucidating the molecular mechanisms of chlorophyll degradation in aquatic environments. Through these studies, we aim to test the hypothesis that interactions with the potentially hazardous, reactive oxygen-generating system of photosynthesis have driven the diversification of eukaryotic life.