環境食品応用化学科

キーワード

雨水活用、IoT、洪水緩和、減災

教授 / 博士(工学)

笠井 利浩

Toshihiro Kasai

学麻

山口大学 工学部 資源工学科、山口大学 工学研究科 資源工学専攻 修士課程、山口大学 工学研究科 物質工学専攻 博士課程修了

経歴

日本文理大学助手、同講師

日本雨水資源化システム学会 広報委員長/理事

相談・講演・共同研究に応じられるテーマ

雨水活用システムの設計・開発

メールアドレス

kasai@fukui-ut.ac.jp

主な研究と特徴

「雨水利用システムの設計、開発」

近年、地球温暖化による気候変動の顕著化により降れば豪雨で洪水になり、逆に高温、晴天が続いて渇水被害が大きくなってきており、今後その傾向は益々甚大化すると予想される。また、南海トラフをはじめとする大地震被災時の生活用水の確保の問題が大きくなってきている。これらの問題の解決法の一つとして、雨水活用が挙げられる。豪雨を雨水タンクに貯水することで特に都市部における内水氾濫の緩和に役立ち、一方でその貯留した雨水を利用することで渇水対策にもなる。さらに日常的に雨水利用することで、突発的に訪れる被災時にも生活用水として役立ち、自衛隊などによる外部からの給水以前に利用可能な水源を確保することができ、また雨が降れば満水となる事から長期の避難生活にも対応できる。これらの雨水活用システムにIOT技術を持ち込むことで街中のシステムをクラウド化して一括管理することができる。降雨予測に基づくタンクの貯水・排水自動遠隔制御を行えば、雨水システムの効果が最大化される。また、被災時にはその情報をもとにSNS等を通じて配信することで市民への給水を効果的に行えるようになる。

今後の展望

貯留雨水の用途拡大のため安定的に水道水水質が確保できるシステムを目指す。また、IoT技術を応用した雨水タンククラウドのプロトモデルを構築し、実際に稼働させる。さらに海外展開に向けた雨水利用システムの仕様検討を行う。

Department of Applied Chemistry and Food Science

Key words

Rainwater harvesting, IoT, Flood mitigation, Disaster mitigation,

Doctor of Engineering / Professor

Toshihiro Kasai

Education

Department of Resource Engineering, Facluty of Engineering, Yamaguchi University, Yamaguchi University Graduate School of Engineering, Master's Program, Yamaguchi University Graduate School of Engineering, Material Engineering (Doctoral Program)

Professional Background

Research Associate, Assistant Professor, Nippon Bunri University, Public relations chairperson, Director, Japan Rainwater Resource Systems Association

Consultations, Lectures, and Collaborative Research Themes

Design and development of rainwater utilization system

e-mail address

kasai@fukui-ut.ac.jp

Main research themes and their characteristics

Design and development of rainwater harvesting systems

In recent years, climate change caused by global warming has resulted in heavy rainfall that causes flooding, while high temperatures and clear skies have caused drought damage, and this trend is expected to intensify. In addition, the problem of securing water for daily use in the event of a major earthquake, such as the Nankai Trough, is becoming an increasingly serious issue. One solution to these problems is the use of rainwater. Storing heavy rainfall in rainwater tanks can help alleviate internal flooding, especially in urban areas, while using the stored rainwater can help prevent drought. Furthermore, daily use of rainwater can be useful as domestic water in the event of a sudden disaster, and can ensure that a water source is available before the Self-Defense Forces or other organizations supply water from an external source. By incorporating IoT technology into these rainwater utilization systems, it is possible to cloud and centrally manage systems throughout the city. Automatic remote control of tank storage and drainage based on rainfall forecasts would maximize the effectiveness of rainwater systems. In addition, in the event of a disaster, this information can be used to distribute through SNS and other means to effectively supply water to citizens.

Future prospects

The goal is to create a system that ensures stable tap water quality in order to expand the use of stored rainwater. In addition, a prototype model of a rainwater tank cloud that applies IoT technology will be built and put into actual operation. Furthermore, we will study the specifications of a rainwater utilization system for overseas deployment.