電気電子情報工学科

キーワード

宇宙通信地上局、衛星リモートセンシング、衛星データ利用

教授 / 博十 (理学)

中城

Tomoyuki Nakajo

学歷

東北大学 宇宙地球物理学科、東北大学 大学院 理学研究科 地球物理学専攻 修土課程、 東北大学大学院 理学研究科 地球物理学専攻 博士課程満期退学

福井工業大学講師、准教授、福井工業大学教授

相談・講演・共同研究に応じられるテーマ

あわらキャンパス宇宙通信地上局を用いた人工衛星・探査機の運用、地球観測衛星データの利活用

メールアドレス

nakajo@fukui-ut.ac.jp

主な研究と特徴

「地球周回から月周辺軌道までの人工衛星・探査機の運用を可能とする宇宙通信地上局の開発」

近年、人類の宇宙活動の場は地球近傍(高度約500km)から月周辺(距離約40万km)まで広がりつつあり、多く の人工衛星・探査機によるミッションが計画されている。一方で、それらの人工衛星・探査機をコントロールする地 上のアンテナシステム(宇宙通信地上局)が不足しており、その整備が課題となっている。このような背景から、福 井工業大学では、あわらキャンパスに地球近傍を周回する人工衛星の運用を主目的とする口径3.9mパラボラアンテ ナシステムおよび月周辺探査機の運用を主目的とする口径13.5mパラボラアンテナシステムの開発整備を行い、そ の実証を進めている。これらのアンテナシステムにより構成される宇宙通信地上局は、地球周回から月周辺軌道まで の人工衛星・探査機の運用が可能な日本国内においてはJAXA以外で唯一の宇宙通信地上局である。

月探査機の運用では従来、口径30m以上の大型アンテナが使用されてきたが、今後の月探査ミッションの需要増 に対して、既存の大型アンテナのみではその数的な制約から必要な通信・運用機会を提供できない。多数展開に適し、 必要な通信・運用機会を創出可能な低コストでコンパクトな宇宙通信地上局を世界に先駆けて開発する独創的な取り 組みである。

今後の展望

JAXA、大学、民間企業による地球周回衛星や月探査プロジェクトとの協働が具体的に始まっており、宇宙関連企業への学生の人材輩出も進展してい る。本学衛星地上局を活用した宇宙通信および衛星データ利活用の研究、および研究を軸とした人材育成の観点から宇宙産業発展へ貢献していきたい。

Department of Electrical, Electronic and Computer Engineering

Key words

Satellite remote sensing, satellite data utilization, satellite ground station

Doctor of Science / Professor

Tomoyuki Nakajo

Education

Department of Geophysics, Faculty of Science, Tohoku University
Tohoku University Graduate School of Science, Department of Geophysics, Master's program Tohoku University Graduate School of Science, Department of Geophysics, Doctoral program

Professional Background

Lecturer, Associate professor, Fukui University of Technology Professor at Fukui University of Technology

Consultations, Lectures, and Collaborative Research Themes

satellite operation using satellite ground station in Fukui University of Technology, Utilization of satellite data

e-mail address

nakajo@fukui-ut.ac.jp

Main research themes and their characteristics

Development of a space communication ground station enabling the operation of satellites and spacecraft from Earth orbit to lunar orbit

In recent years, the scope of human space activities has been expanding from near-Earth space (approximately 500 km altitude) to the vicinity of the Moon (approximately 400,000 km distance), and numerous missions involving satellites and spacecraft are being planned. However, there is currently a shortage of ground-based antenna systems—space communication ground stations—needed to control these satellites and spacecraft, and the development of such infrastructure has become a pressing issue.

Against this backdrop, Fukui Üniversity of Technology is developing and demonstrating two parabolic antenna systems at its Awara Campus: a 3.9-meter-diameter antenna system primarily intended for operating satellites in Earth orbit, and a 13.5-meter-diameter antenna system primarily intended for operating spacecraft in lunar orbit. These antenna systems together form a space communication ground station capable of supporting satellite and spacecraft operations from Earth orbit to lunar orbit. Within Japan, this is the only such facility aside from those operated by JAXA.

Traditionally, large antennas with diameters exceeding 30 meters have been used for lunar missions. However, with the expected increase in demand for lunar exploration, existing large-scale antennas alone will not be sufficient to provide the necessary communication and operational opportunities due to their limited number. This initiative represents a pioneering and original effort to develop a compact, low-cost space communication ground station suitable for deployment in greater numbers, thereby enabling the creation of adequate communication and operational opportunities to support future lunar missions.

Future prospects

Concrete collaborations have already begun with JAXA, universities, and private companies on Earth-orbiting satellite and lunar exploration projects. In parallel, the university is also making progress in fostering human resources who go on to work in the space industry. By leveraging our university's satellite ground station, we aim to contribute to the advancement of the space industry through research on space communications and satellite data utilization, as well as through research-based human resource development.