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Main research themes and their characteristics

[Interpretable Disease Name Estimation Using Semantic Representation Learning of Medical Terms |

This research introduces a method for estimating disease names -
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ICD-10 classification using a linear SVM model. The interpretability of the
model is enhanced by visualizing the weight distribution of feature words.
For example, the distribution of weights for the disease feature words ‘neonatal disorder’ is linked to conditions related to newborns through ICD-10
codes starting with ‘B’ as shown in Figure 3.

An evaluation benchmark using Toyama University Hospital’s discharge summaries, where the training and test sets differed in data distribution
(old vs. new electronic medical records), showed that this approach improved the F1 score for disease name estimation by 10 points compared to
conventional methods, reaching 72.4 points. Further fine-tuning with large language models like BERT improved the F1 score by an additional 10
points but highlighted challenges with interpretability. Achieving accurate and easily interpretable estimation of disease names from a patient’s chief
complaint is a future goal.

Future directions include applying Generative Al to enhance the generalization and adaptability of the method for broader clinical applications.

Fig.1 Example of medical-term semantic-vector dictionary.
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Fig.2 Semantic representation learning process based on the medical-term Fig.3 Distribution of weights by ICD-10 code for the
semantic vector dictionary. disease feature word ‘neonatal disorder.’
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