原子力技術応用工学科

キーワード

放射線計測、逆問題、アンフォールディング、応答関数、不確かさ、 モンテカルロシミュレーション

教授 / 博士(工学)

西沢

Hiroshi Nishizawa

学歷

大阪大学 工学部 原子力工学科、大阪大学 大学院 工学研究科 原子力工学専攻 修士課程

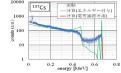
三菱電機(株)産業システム研究所 センシングシステム開発部、先端技術総合研究所 センサ・情報 処理システム技術部 主席研究員、電力システム製作所 開発部、第42回環境賞(環境大臣賞・優秀賞) (2015)

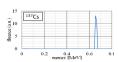
相談・講演・共同研究に応じられるテーマ

放射線計測、放射線検出器・放射線検出方法の高度化、放射線挙動解析、アンフォールディング法の高 度化・実用化

メールアドレス

nishizawa@fukui-ut.ac.jp




主な研究と特徴

「アンフォールディング法を用いた高線量率場対応のγ線スペクトロメータ」

福島第一原子力発電所等の事故施設の除染や廃炉計画の策定には汚染分布と核種構成の把握が必要であるが、炉心近傍は数百mSv/h~数Sv/hもの高 線量率領域がある。核種構成の把握には、一般的にア線スペクトル測定の手法が用いられるが、高線量率領域では計数率が非常に高くパルスパイルアッ プや窒息現象が起こるため、正確なスペクトル測定が不可能となる。計数率を下げるために遮蔽体やコリメータを用いる方法があるが、大幅な重量増加 となりハンドリングが困難となる。そこで、本研究では遮蔽体の無い小型軽量の検出器の実現

に向け、超小型検出器の出力をアンフォールディングしてスペクトルを復元する手法を試みる。 アンフォールディングを正しく行うためには、正確な応答関数と適切な初期推定値を用いる ことがポイントとなる。本研究では、検出器として1mm角程度のCdTe半導体を選定し、そ の応答関数を電子光子輸送モンテカル口コードEGS5にて作成した。CdTe特有の電荷キャリ ア捕獲現象を、EGS5で計算される付与エネルギーに電荷収集割合の重みを付ける形で模擬す ることで、実験値を精度良く再現できた(図1)。この応答関数を用いて 137 Csの実験値をアン フォールディングした結果、線源エネルギー0.662MeVのピークを復元できた(図2)。

値との比較

図1. 応答関数の計算例と実験 図2. スペクトル復元結果の例

今後の展望

高線量率場で使用できる小型軽量のスペクトロメータ実現の可能性を得ることができた。本手法は福島第一原子力発電所の燃料デブリ性状の遠隔測 定にも応用できる可能性がある。福島復興に向け、さらなる高線量率対応を目指し、検出器材料・構成などの最適化を進めていく予定である。

Department of Applied Nuclear Technology

Key words

Radiation measurement, inverse problem, unfolding, response function, uncertainty, Monte-Carlo simulation

Doctor of Engineering / Professor

Hiroshi Nishizawa

Education

Department of Nuclear Engineering, Faculty of Engineering, Osaka University,

Department of Nuclear Engineering, Master's Program, Graduate School of Engineering, Osaka University

Professional Background

Head Researcher, Sensing systems Development Department of Industrial Electronics & Systems Laboratory, Sensor Information Processing Department of Advanced Technology R&D Center, Mitsubishi Electric Corp. / The 42nd Environment Minister's Award (2015)

Consultations, Lectures, and Collaborative Research Themes

Radiation measurement, Improvement of radiation detectors or measurement methods, Radiation behavior analysis, Research and implementation of unfolding method

e-mail address

nishizawa@fukui-ut.ac.jp

Main research themes and their characteristics

Gamma-ray spectrometer for extremely high dose rate field using unfolding method

In order to plan decontamination and decommissioning of nuclear accident facilities such as Fukushima Daiichi Nuclear Power Station, it is necessary to reveal both the contamination distribution and nuclide composition. However, there are extremely high dose rate areas of several hundred mSv/h or several Sv/h near the reactor core. Gamma-ray spectroscopy method is generally adapted to identify nuclides, but proper spectroscopy becomes impossible at extremely high dose rate due to the pulse pile-up and saturation phenomena because of very high pulse count rate. Although shielding or collimators were used in order to decrease pulse count rate in some previous

researches, it becomes very difficult to handle the apparatus due to the heavy structural materials. Therefore, we try to restore spectra by unfolding the output of small detector to realize shield-less and lightweight spectrometer.

The key points to conduct correct unfolding are to use the exact response function and the proper initial guess. In this study, about 1mm cubic CdTe semiconductor detector was selected and the response function of the detector was calculated using Monte-Carlo simulation code, EGS5. The charge carrier trapping phenomena peculiar to CdTe were simulated by weighting charge collection efficiency to deposited energy calculated in EGS5 to reproduce the experiment results precisely (Fig.1). By using the response function made in this way, the result of unfolded ¹³⁷Cs experiment data indicated that the energy peak of 0.662MeV was clearly restored (Fig.2).

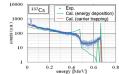


Fig.1 Example of response function Fig.2 Example of restored compared with experiment

0.4 energy [MeV]

spectrum

Future prospects

We have acquired the potential to realize high dose rate spectrometer. This method can be applied to remote measurement of fuel debris in Fukushima Daiichi reactor core. In the future, we are going to optimize the detector characteristic to contribute Fukushima reconstruction.