建築土木工学科

キーワード

防災減災対策、耐震性向上、防災教育、地域防災計画、医工連携、災害調査、 被害分析、災害復興、要支援者避難、着るロボット、熱中症対策

教授/博士(工学)

竹田

周平

Shuhei Takeda

学歷

福井工業大学 建設工学科 土木工学専攻 卒業 金沢大学大学院 自然科学研究科 環境科学専攻 修了

株式会社日本海コンサルタント(技術)

福井工業大学講師、准教授を経て、現在は福井工業大学教授

相談・講演・共同研究に応じられるテーマ

相談:下記の具体的な研究に関する内容

講演:防災減災、地域防災、生き延びるセンスを養うテーマ、防災教育、BCP、熱中災害対策 共同研究:防災、医工連携、デザイン開発、着るロボット、インフラ整備や長寿命化

メールアドレス

s-takeda@fukui-ut.ac.jp

主な研究と特徴

「人々の命を守る防災減災技術の開発とデザイン」

日本は災害大国である。2011年の東日本大震災をはじめ、熊本地震や能登半島地震が連続して発生している。研究室では、台風や豪雨の様な進行性 災害や、地震の様な突発性災害、暑熱環境における災害や雪害、またこれらの複合型の災害の特徴を分析し、人々の生活に重要な防災・減災計画やラ イフライン等の耐震性向上に関する技術開発、人の命を守る医療や福祉の防災性向上などの研究開発に取り組んでいます。これらの研究により、災害

大国日本における「まち・都市」の機能維持、誰もが安全で安心 できる環境が創られます。また近年では、ダイバーシティやイン クルーシブ防災にも注力し、特に障害者の防災時対応や女性視点 での防災計画など、実効性のある計画や訓練、防災システムの研 究開発を展開しています。これらの研究・調査の成果は、人々が「想 定外の災害でも生き延びることができる」環境の整備に大きく貢 献出来るものと考えています。

今後の展望

災害大国日本で生活するためには、防災への備えは必須です。特に基本計画や防災計画、各種マニュアルを作成することではなく、十分なアセスメ ントに基づき、地域の特性を踏まえた実効性の高い取り組みが求められます。研究室では、この様な取り組みを進めております。

Department of Architecture and Civil Engineering

Key words

Disaster prevention. Education on disaster prevention. Robotic development. Medical-engineering collaboration, Disaster recovery

Dr.Eng. / Professor

Shuhei Takeda

Education

Fukui University of Technology, Department of Civil Engineering Kanazawa University, Graduate School of Natural Science and Technology

Professional Background

Nihonkai Consultant Co., Ltd. / Chief Engineer

Fukui University of Technology / Lecturer, Associate professor

Consultations, Lectures, and Collaborative Research Themes

Consultations and Lectures: Education for disaster prevention, Disaster recovery Collaborative Research Themes: Robotic development, Medical-engineering collaboration,

e-mail address

s-takeda@fukui-ut.ac.jp

Main research themes and their characteristics

The design of disaster prevention

A wide range of natural disasters occurs in Japan. A massive earthquake of magnitude of 9.0(Great East Japan Earthquake) occurred Friday 11 in 2011, off the Pacific coast of the northeastern part of the Tohoku Region. It is concerned that the "Nankai trough Earthquake" and the "Tokyo Inland Earthquake (Metropolitan Earthquake) " will occur in the near future. From the above, it is important to keep the performance of "Social System" after the natural disasters. Thus, we have been studying on disaster prevention and reduction of the effects of a natural disaster. Recently we focus the "Specific Research" as follows.

Specific Research

investigation: Disaster damage investigation(Fig.1), City reconstruction plan Medical and welfare facility: Medical-engineering collaboration, Disaster Recovery on medical equipment (Fig.2), Wearable robotic (Fig.7) Education on disaster prevention: Disaster prevention plan, BCP, Hyper

active training (Fig.3, Fig.4) Damage
Research on infection control: Development of a simple negative pressure

Heat Stroke Prevention: Development of heat stroke prevention system(Fig.6)

Future prospects

Living in disaster-prone Japan requires essential disaster preparedness. Rather than merely creating basic plans, disaster prevention plans, and various manuals, what is needed are highly effective initiatives based on thorough assessments and tailored to regional characteristics. Our laboratory is advancing such initiatives.